Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.013
Filter
Add more filters

Publication year range
1.
Food Funct ; 15(8): 4421-4435, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38563324

ABSTRACT

Fu Brick tea belongs to fermented dark tea, which is one of the six categories of tea. Fu Brick tea has been reported to reduce adiposity and has beneficial effects in the treatment of hypercholesterolemia and cardiovascular disease. Theabrownin (TB) is one of the pigments with the most abundant content in Fu Brick tea. TB has also been reported to have lipid-lowering effects, but its mechanism remains unclear. We found that TB could effectively reduce the insulin resistance and fat deposition induced by a high fat diet (HFD), decrease inflammation in the liver, improve intestinal integrity, and reduce endotoxins in circulation. Further studies showed that TB increased the abundance of Verrucomicrobiota and reduced the abundance of Firmicutes and Desulfobacterota in the intestinal tract of obese mice. The alteration of gut microbiota is closely linked to the metabolic phenotype after TB treatment through correlation analysis. Moreover, TB changed the gut microbial metabolites including L-ornithine, α-ketoglutarate, and glutamine, which have also been found to be upregulated in the liver after TB intervention. In vitro, L-ornithine, α-ketoglutarate, or glutamine significantly reduced lipopolysaccharide (LPS)-induced inflammation in macrophages. Therefore, our results suggest that TB can reduce adiposity, systemic insulin resistance, and liver inflammation induced by a HFD through altering gut microbiota and improving the intestinal tight junction integrity. The metabolites of gut microbiota might also play a role in ameliorating the HFD-induced phenotype by TB.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Inflammation , Insulin Resistance , Mice, Inbred C57BL , Tea , Animals , Male , Mice , Catechin/pharmacology , Diet, High-Fat/adverse effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Liver/metabolism , Liver/drug effects , Tea/chemistry
2.
Food Funct ; 15(8): 4262-4275, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38526548

ABSTRACT

Changes in the chemical composition of white tea during storage have been studied extensively; however, whether such chemical changes impact the efficacy of white tea in ameliorating colitis remains unclear. In this study, we compared the effects of new (2021 WP) and 10-year-old (2011 WP) white tea on 3% dextrose sodium sulfate (DSS)-induced ulcerative colitis in mice by gavaging mice with the extracts at 200 mg kg-1 day-1. Chemical composition analysis showed that the levels of 50 compounds, such as flavanols, dimeric catechins, and amino acids, were significantly lower in the 2011 WP extract than in the 2021 WP extract, whereas the contents of 21 compounds, such as N-ethyl-2-pyrrolidinone-substituted flavan-3-ols, theobromine, and (-)-epigallocatechin-3-(3''-O-methyl) gallate, were significantly higher. Results of the animal experiments showed that 2011 WP ameliorated the pathological symptoms of colitis, which was superior to the activity of 2021 WP, and this effect was likely enhanced based on the decreasing of the relative abundance of the g_bacteroides and g_Escherichia-Shigella flora in mice with colitis and promoting the conversion of primary bile acids to secondary bile acids in the colon. These results will facilitate the development of novel functional products from white tea.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , Tea , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Gastrointestinal Microbiome/drug effects , Mice , Tea/chemistry , Dextran Sulfate/adverse effects , Male , Plant Extracts/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Camellia sinensis/chemistry , Catechin/pharmacology , Catechin/analogs & derivatives , Colon/metabolism , Colon/drug effects , Colon/microbiology
3.
Phytomedicine ; 128: 155408, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503153

ABSTRACT

BACKGROUND: Epigallocatechin-3-gallate (EGCG), the primary active compound in green tea, is recognized for its significant anti-inflammatory properties and potential pharmacological effects on inflammatory bowel disease (IBD). However, comprehensive preclinical evidence supporting the use of EGCG in treating IBD is currently insufficient. PURPOSE: To evaluate the efficacy of EGCG in animal models of IBD and explore potential underlying mechanisms, serving as a groundwork for future clinical investigations. METHODS: A systematic review of pertinent preclinical studies published until September 1, 2023, in databases such as PubMed, Embase, Web of Science, and Cochrane Library was conducted, adhering to stringent quality criteria. The potential mechanisms via which EGCG may address IBD were summarized. STATA v16.0 was used to perform a meta-analysis to assess IBD pathology, inflammation, and indicators of oxidative stress. Additionally, dose-response analysis and machine learning models were utilized to evaluate the dose-effect relationship and determine the optimal dosage of EGCG for IBD treatment. RESULTS: The analysis included 19 studies involving 309 animals. The findings suggest that EGCG can ameliorate IBD-related pathology in animals, with a reduction in inflammatory and oxidative stress indicators. These effects were observed through significant changes in histological scores, Disease Activity Index, Colitis Macroscopic Damage Index and colon length; a decrease in markers such as interleukin (IL)-1ß, IL-6 and interferon-γ; and alterations in malondialdehyde, superoxide dismutase, glutathione, and catalase levels. Subgroup analysis indicated that the oral administration route of EGCG exhibited superior efficacy over other administration routes. Dose-response analysis and machine learning outcomes highlighted an optimal EGCG dosage range of 32-62 mg/kg/day, with an intervention duration of 4.8-13.6 days. CONCLUSIONS: EGCG exhibits positive effects on IBD, particularly when administered at the dose range of 32 - 62 mg/kg/day, primarily attributed to its ability to regulate inflammation and oxidative stress levels.


Subject(s)
Anti-Inflammatory Agents , Catechin , Catechin/analogs & derivatives , Inflammatory Bowel Diseases , Oxidative Stress , Catechin/pharmacology , Inflammatory Bowel Diseases/drug therapy , Animals , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Tea/chemistry , Dose-Response Relationship, Drug
4.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543009

ABSTRACT

Epigallocatechin gallate (EGCG) is a catechin, which is a type of flavonoid found in high concentrations in green tea. EGCG has been studied extensively for its potential health benefits, particularly in cancer. EGCG has been found to exhibit anti-proliferative, anti-angiogenic, and pro-apoptotic effects in numerous cancer cell lines and animal models. EGCG has demonstrated the ability to interrupt various signaling pathways associated with cellular proliferation and division in different cancer types. EGCG anticancer activity is mediated by interfering with various cancer hallmarks. This article summarize and highlight the effects of EGCG on cancer hallmarks and focused on the impacts of EGCG on these cancer-related hallmarks. The studies discussed in this review enrich the understanding of EGCG's potential as a therapeutic tool against cancer, offering a substantial foundation for scientists and medical experts to advance scientific and clinical investigations regarding EGCG's possibility as a potential anticancer treatment.


Subject(s)
Catechin , Catechin/analogs & derivatives , Neoplasms , Animals , Catechin/pharmacology , Catechin/therapeutic use , Neoplasms/drug therapy , Cell Proliferation , Signal Transduction , Tea
5.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38534100

ABSTRACT

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Subject(s)
Bacterial Adhesion , Catechin/analogs & derivatives , Escherichia coli Infections , Phenols , Phenylethyl Alcohol/analogs & derivatives , Urinary Tract Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/drug effects , Animals , Mice , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Phenols/pharmacology , Humans , Bacterial Adhesion/drug effects , Resveratrol/pharmacology , Epithelial Cells/microbiology , Epithelial Cells/drug effects , Urinary Bladder/microbiology , Urinary Bladder/drug effects , Urinary Bladder/pathology , Plant Extracts/pharmacology , Female , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Cell Line , Catechin/pharmacology , Caffeic Acids/pharmacology
6.
Pharm Res ; 41(3): 557-566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302834

ABSTRACT

PURPOSE: Green tea is a widely consumed beverage. A recent clinical study reported green tea decreased systemic exposure of raloxifene and its glucuronide metabolites by 34-43%. However, the underlying mechanism(s) remains unknown. This study investigated a change in raloxifene's solubility as the responsible mechanism. METHODS: The effects of green tea extract, (-)-epigallocatechin gallate (EGCG), and (-)-epigallocatechin (EGC) on raloxifene's solubility were assessed in fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluids (FeSSIF). EGCG and EGC represent green tea's main bioactive constituents, flavan-3-gallate and flavan-3-ol catechins respectively, and the tested concentrations (mM) match the µg/mg of each compound in the extract. Our mouse study (n = 5/time point) evaluated the effect of green tea extract and EGCG on the systemic exposure of raloxifene. RESULTS: EGCG (1 mM) and EGC (1.27 mM) decreased raloxifene's solubility in FaSSIF by 78% and 13%, respectively. Micelle size in FaSSIF increased with increasing EGCG concentrations (> 1000% at 1 mM), whereas EGC (1.27 mM) did not change micelle size. We observed 3.4-fold higher raloxifene solubility in FeSSIF compared to FaSSIF, and neither green tea extract nor EGCG significantly affected raloxifene solubility or micelle size in FeSSIF. The mice study showed that green tea extract significantly decreased raloxifene Cmax by 44%, whereas EGCG had no effect. Green tea extract and EGCG did not affect the AUC0-24 h of raloxifene or the metabolite-to-parent AUC ratio. CONCLUSIONS: This study demonstrated flavan-3-gallate catechins may decrease solubility of poorly water-soluble drugs such as raloxifene, particularly in the fasted state.


Subject(s)
Catechin , Tea , Mice , Animals , Catechin/analysis , Catechin/metabolism , Catechin/pharmacology , Raloxifene Hydrochloride/pharmacology , Solubility , Micelles , Antioxidants , Plant Extracts/pharmacology
7.
Nutrients ; 16(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38398883

ABSTRACT

The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.


Subject(s)
Catechin , Catechin/analogs & derivatives , Endometriosis , Leiomyoma , Polycystic Ovary Syndrome , Female , Humans , Endometriosis/drug therapy , Endometriosis/genetics , Endometriosis/pathology , Epigenesis, Genetic , Polycystic Ovary Syndrome/drug therapy , Quality of Life , Catechin/pharmacology , Catechin/therapeutic use , Tea
8.
Phytomedicine ; 125: 155389, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306720

ABSTRACT

BACKGROUND: Acanthamoeba is an opportunistic pathogen that can cause human infections such as granulomatous amebic encephalitis and acanthamoeba keratitis. However, no specific drug to treat the diseases has been developed. Therefore, the discovery or development of novel drugs for treating Acanthamoeba infections is urgently needed. The anti-protozoan activity of (‒)-epicatechin (EC) has been reported, suggesting it is an attractive anti-protozoal drug candidate. In this study, the amoebicidal activity of EC against A. castellanii was assessed and its mechanism of action was unveiled. METHODS: The amoebicidal activity of EC against A. castellanii trophozoites and the cytotoxicity of EC in HCE-2 and C6 cells were determined with cell viability assay. The underlying amoebicidal mechanism of EC against A. castellanii was analyzed by the apoptosis/necrosis assay, TUNEL assay, mitochondrial dysfunction assay, caspase-3 assay, and quantitative reverse transcription polymerase chain reaction. The cysticidal activity of EC was also investigated. RESULTS: EC revealed amoebicidal activity against A. castellanii trophozoites with an IC50 of 37.01 ± 3.96 µM, but was not cytotoxic to HCE-2 or C6 cells. EC induced apoptotic events such as increases in DNA fragmentation and intracellular reactive oxygen species production in A. castellanii. EC also caused mitochondrial dysfunction in the amoebae, as evidenced by the loss of mitochondrial membrane potential and reductions in ATP production. Caspase-3 activity, autophagosome formation, and the expression levels of autophagy-related genes were also increased in EC-treated amoebae. EC led to the partial death of cysts and the inhibition of excystation. CONCLUSION: EC revealed promising amoebicidal activity against A. castellanii trophozoites via programmed cell death events. EC could be a candidate drug or supplemental compound for treating Acanthamoeba infections.


Subject(s)
Acanthamoeba castellanii , Amebiasis , Amebicides , Catechin , Dieldrin/analogs & derivatives , Mitochondrial Diseases , Animals , Humans , Amebicides/pharmacology , Amebicides/therapeutic use , Caspase 3 , Catechin/pharmacology , Amebiasis/drug therapy , Trophozoites , Apoptosis , Mitochondrial Diseases/drug therapy
9.
Int J Biol Macromol ; 259(Pt 1): 129189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181909

ABSTRACT

Tea polyphenols have been reported as potential α-amylase inhibitors. However, the quantitative structure-activity relationship (QSAR) between tea polyphenols and human pancreas α-amylase (HPA) is not well understood. Herein, the inhibitory effect of twelve tea polyphenol monomers on HPA was investigated in terms of inhibitory activity, as well as QSAR analysis and interaction mechanism. The results revealed that the HPA inhibitory activity of theaflavins (TFs), especially theaflavin-3'-gallate (TF-3'-G, IC50: 0.313 mg/mL), was much stronger than that of catechins (IC50: 18.387-458.932 mg/mL). The QSAR analysis demonstrated that the determinant for the inhibitory activity of HPA was not the number of hydroxyl and galloyl groups in tea polyphenol monomers, while the substitution sites of these groups potentially might play a more important role in modulating the inhibitory activity. The inhibition kinetics and molecular docking revealed that TF-3'-G as a mixed-type inhibitor had the lowest inhibition constant and bound to the active sites of HPA with the lowest binding energy (-7.74 kcal/mol). These findings could provide valuable insights into the structures-activity relationships between tea polyphenols and the HPA inhibitors.


Subject(s)
Biflavonoids , Catechin , Gallic Acid/analogs & derivatives , Polyphenols , Humans , Polyphenols/pharmacology , Polyphenols/chemistry , Pancreatic alpha-Amylases , Molecular Docking Simulation , Tea/chemistry , Catechin/pharmacology , Catechin/chemistry
10.
Curr Top Med Chem ; 24(1): 60-73, 2024.
Article in English | MEDLINE | ID: mdl-38291871

ABSTRACT

Over the centuries, influenza and its associated epidemics have been a serious public health problem. Although vaccination and medications (such as neuraminidase inhibitors) are the mainstay of pharmacological approaches to prevent and treat influenza, however, frequent mutations in the influenza genome often result in treatment failure and resistance to standard medications which limit their effectiveness. In recent years, green tea catechins have been evaluated as potential anti-influenza agents. Herein, in this review, we highlighted the effects and mechanisms underlying the inhibitory effects of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea, against different influenza viral infections, and their clinical benefits toward prevention and treatment. In addition, as the severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) causes the outbreak of COVID-19 pandemic, our review also delineates the current perspective on SARS-CoV-2 and future insights as to the potential application of EGCG on suppressing the flu-like symptoms caused by COVID-19.


Subject(s)
COVID-19 , Catechin , Influenza, Human , Humans , Influenza, Human/drug therapy , Tea , Catechin/pharmacology , Catechin/therapeutic use , Pandemics , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Perception
11.
Sci Rep ; 14(1): 2253, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38279010

ABSTRACT

Tea (Camellia spp.) is an important medicinal herb. C. sinensis var. sinensis is the most studied tea variety due to its more preferred flavor than C. sinensis var. assamica (Assam tea), the less economic importance with more bitter variety. A bitter taste highlights its potential as a candidate source for tea catechins, the health beneficial actives applicable for ageing treatment. Nonetheless, indicative data for tea on UV-induced and senescent ageing remain unclarified. Assam tea extract (ATE) was prepared and standardized in terms of TPC, TFC and TTC. EGCG was HPLC quantified as the prime ATE catechin. In vitro antioxidant activity of ATE was exhibited with ABTS, DPPH and FRAP assays. ATE's cellular antioxidant activity was indicated in HDFs at a stronger degree than ascorbic acid. The photoaging protection of ATE was evidenced in a coculture of HaCaT cells and HDFs. ATE markedly suppressed UV-induced IL-6, IL-8, MMP-1 and MMP-9 expressions. The proficiency of ATE targeting on senescent ageing was demonstrated in an ex vivo human skin model, where IL-6 and MMP-1 expressions were suppressed, whilst hyaluronic acid and collagen syntheses were promoted. ATE was chemically stabled as indicated by the catechin contents and color parameters following 6 months storage under conditions recommended for topical product. ATE enriched in catechins warrants its applicability as a new generation of photoaging protectant agent promising for the prevention and treatment for senescent ageing. The findings indicate the proficiency of ATE for innovative anti-ageing agent.


Subject(s)
Camellia sinensis , Catechin , Skin Aging , Humans , Tea/chemistry , Camellia sinensis/chemistry , Catechin/pharmacology , Catechin/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Matrix Metalloproteinase 1 , Plant Extracts/pharmacology , Plant Extracts/chemistry , Interleukin-6 , Aging
12.
J Med Food ; 27(1): 1-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38060708

ABSTRACT

Theaflavins are the characteristic polyphenols in black tea which can be enzymatically synthesized. In this review, the effects and molecular mechanisms of theaflavins on obesity and its comorbidities, including dyslipidemia, insulin resistance, hepatic steatosis, and atherosclerosis, were summarized. Theaflavins ameliorate obesity potentially via reducing food intake, inhibiting pancreatic lipase to reduce lipid absorption, activating the adenosine monophosphate-activated protein kinase (AMPK), and regulating the gut microbiota. As to the comorbidities, theaflavins ameliorate hypercholesterolemia by inhibiting micelle formation to reduce cholesterol absorption. Theaflavins improve insulin sensitivity by increasing the signaling of protein kinase B, eliminating glucose toxicity, and inhibiting inflammation. Theaflavins ameliorate hepatic steatosis via activating AMPK. Theaflavins reduce atherosclerosis by upregulating nuclear factor erythropoietin-2-related factor 2 signaling and inhibiting plasminogen activator inhibitor 1. In randomized controlled trails, black tea extracts containing theaflavins reduced body weight in overweight people and improved glucose tolerance in healthy adults. The amelioration on the hyperlipidemia and the prevention of coronary artery disease by black tea extracts were supported by meta-analysis.


Subject(s)
Atherosclerosis , Biflavonoids , Catechin , Humans , AMP-Activated Protein Kinases , Antioxidants/pharmacology , Tea , Catechin/pharmacology , Biflavonoids/pharmacology , Biflavonoids/therapeutic use , Obesity/drug therapy , Glucose
13.
Eur J Appl Physiol ; 124(3): 827-836, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37707596

ABSTRACT

PURPOSE: Accumulation of ammonia causes central and peripheral fatigue. This study aimed to investigate the synergistic effect of tea catechins and low-dose ornithine in activating the urea cycle to reduce blood ammonia levels during exercise. METHODS: We used hepatocyte-like cells derived from human-induced pluripotent stem (iPS) cells to assess the effect of tea catechins combined with ornithine on urea cycle activity. The urea production and expression of key genes involved in the metabolism of urea were investigated. We then examined the synergistic improvement in ammonia metabolism by tea catechins in combination with ornithine in a human pilot study. RESULTS: Tea catechins combined with ornithine increased urea cycle activity in hepatocyte-like cells derived from human iPS cells. Intake of 538.6 mg of tea catechins with 1592 mg of ornithine for 2 consecutive days during exercise loading suppressed the exercise-induced increase in the blood ammonia concentration as well as stabilized blood glucose levels. CONCLUSION: Controlling the levels of ammonia, a toxic waste produced in the body, is important in a variety of situations, including exercise. The present study suggests that a heterogeneous combination of polyphenols and amino acids efficiently suppresses elevated ammonia during exercise in humans by a mechanism that includes urea cycle activation. TRIAL REGISTRATION: This study was registered in the University Hospital Medical Information Network Clinical Trial Registry (No. UMIN000035484, dated January 8, 2019).


Subject(s)
Catechin , Ornithine , Humans , Pilot Projects , Ornithine/pharmacology , Ornithine/metabolism , Catechin/pharmacology , Ammonia , Urea/metabolism , Tea/chemistry
14.
J Ethnopharmacol ; 323: 117616, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38142877

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rice (Oryza sativa L.), a staple food for a significant portion of the global population, has been recognized for its traditional medicinal properties for centuries. Rice bran, a by-product of rice milling, contains many bioactive compounds with potential pharmaceutical and therapeutic benefits. In recent years, research has highlighted the anti-inflammatory potential of rice bran, contributed by the bioactive components concentrated in their bran but, unfortunately, entrapped in the bran matrix, with limited bioavailability. Previous studies have reported that the enzymatic treatment of rice bran improves the bran's bioactive compound profile but did not investigate its impact on chronic conditions such as inflammation. AIM OF THE STUDY: This study investigates the anti-inflammatory effects of endo-1,4-ß-xylanase (ERB) and Viscozyme (VRB) treated red rice bran extracts against lipopolysaccharide-induced inflammation in RAW264.7 macrophages in comparison with non-enzyme-treated bran (CRB). Further established their efficacy with known anti-inflammatory compounds-ferulic acid (FA), catechin (CAT), γ-tocopherol (GTP), and γ-oryzanol (ORZ). MATERIALS AND METHODS: The RAW 264.7 macrophage cells were pre-treated with non-toxic concentrations (10-200 µg/mL) of FA, CAT, GTP, ORZ, CRB, ERB, and VRB, followed by inflammatory stimulation with LPS for 24 h. Further, the cell supernatant and pellets were harvested to study the anti-inflammatory effects by evaluating and measuring their efficacy in inhibiting pro-inflammatory cytokines (TNF-α, IL-6, IL-10, IL-1ß) and mediators (ROS, NO, PGE2, COX2, iNOS) through biochemical, ELISA, and mRNA expression studies. RESULTS: The findings showed that both ERB and VRB effectively inhibited the production of pro-inflammatory markers (TNF-α, IL-6) and mediators (ROS, NO, PGE2) by downregulating mRNA expressions of inflammatory genes (TNF-α, IL-1ß, IL-6, IL-10, COX2, iNOS) and demonstrated anti-inflammatory efficacy higher than CRB. On comparison, ERB demonstrated exceptional efficacy by causing a reduction of 48% in ROS, 20% in TNF-α, and 23% in PGE2 at 10 µg/mL, surpassing the anti-inflammatory capabilities of all the bioactive compounds, FA and ORZ, respectively. At the same time, VRB exhibited remarkable efficacy by reducing NO production by 52% at 200 µg/mL and IL-6 by 66% at 10 µg/mL, surpassing FA, CAT, ORZ, and GTP. Further, ERB downregulated the mRNA expression of IL-10 and iNOS, while VRB downregulated TNF-α, IL-1ß, and COX2 expression. Both extracts equally downregulated IL-6 expression at 10 µg/mL, demonstrating the efficacy more remarkable/on par with established anti-inflammatory compounds. CONCLUSIONS: Overall, enzyme-treated rice bran/extract, particularly ERB, possesses excellent anti-inflammatory properties, making them promising agents for alternatives to contemporary nutraceuticals/functional food against inflammatory diseases.


Subject(s)
Catechin , Coumaric Acids , Oryza , Phenylpropionates , Oryza/chemistry , gamma-Tocopherol/metabolism , gamma-Tocopherol/pharmacology , gamma-Tocopherol/therapeutic use , Interleukin-10/metabolism , Catechin/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Dinoprostone/metabolism , Cyclooxygenase 2/metabolism , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/therapeutic use , Plant Extracts/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Macrophages , RNA, Messenger/metabolism , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/pharmacology , Guanosine Triphosphate/therapeutic use , Lipopolysaccharides/pharmacology
15.
Molecules ; 28(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067448

ABSTRACT

Diabetes contributes to the rising global death rate. Despite scientific advancements in understanding and managing diabetes, no single therapeutic agent has been identified to effectively treat and prevent its progression. Consequently, the exploration for new antidiabetic therapeutics continues. This study aimed to investigate the antidiabetic bioactive ethyl acetate fraction of F. lutea at the molecular level to understand the molecular interactions and ligand-protein binding. To do this, the fraction underwent column chromatography fractionation to yield five compounds: lupeol, stigmasterol, α-amyrin acetate, epicatechin, and epiafzelechin. These compounds were evaluated in vitro through α-glucosidase inhibition and glucose utilization assays in C2C12 muscle and H-4-11-E liver cells using standard methods. In silico analysis was conducted using molecular docking and ADMET studies. Epicatechin exhibited the most potent α-glucosidase inhibition (IC50 = 5.72 ± 2.7 µg/mL), while epiafzelechin stimulated superior glucose utilization in C2C12 muscle cells (33.35 ± 1.8%) and H-4-11-E liver cells (46.7 ± 1.2%) at a concentration of 250 µg/mL. The binding energies of the isolated compounds for glycogen phosphorylase (1NOI) and α-amylase (1OSE) were stronger (<-8.1) than those of the positive controls. Overall, all tested compounds exhibited characteristics indicative of their potential as antidiabetic agents; however, toxicity profiling predicted epiafzelechin and epicatechin as better alternatives. The ethyl acetate fraction and its compounds, particularly epiafzelechin, showed promise as antidiabetic agents. However, further comprehensive studies are necessary to validate these findings.


Subject(s)
Catechin , Diabetes Mellitus , Ficus , Hypoglycemic Agents/chemistry , Molecular Docking Simulation , Catechin/pharmacology , Ficus/chemistry , alpha-Glucosidases , Plant Extracts/chemistry , Diabetes Mellitus/drug therapy , Glucose , alpha-Amylases
16.
Chem Res Toxicol ; 36(12): 1872-1875, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38055372

ABSTRACT

Epigallocatechin-3-O-gallate (EGCG) is the major component of green tea extract, commonly found in dietary supplements, and has been associated with immune-mediated liver injury. The purpose of this study was to investigate the immunogenicity of EGCG in healthy donors expressing HLA-B*35:01, and characterize EGCG responsive T-cell clones. We have shown that EGCG can prime peripheral blood mononuclear cells and T-cells from donors with and without the HLA-B*35:01 allele. T-cell clones were CD4+ve and capable of secreting Th1, Th2, and cytolytic molecules. These data demonstrate that EGCG can activate T-cells in vitro, suggesting a significant role in the pathogenesis of green tea extract induced liver injury.


Subject(s)
Catechin , Chemical and Drug Induced Liver Injury, Chronic , Humans , Leukocytes, Mononuclear , Antioxidants , Tea , HLA-B Antigens/genetics , Plant Extracts/pharmacology , Catechin/pharmacology
17.
Molecules ; 28(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959682

ABSTRACT

Microcin E492 (MccE492) is an antimicrobial peptide and proposed virulence factor produced by some Klebsiella pneumoniae strains, which, under certain conditions, form amyloid fibers, leading to the loss of its antibacterial activity. Although this protein has been characterized as a model functional amyloid, the secondary structure transitions behind its formation, and the possible effect of molecules that inhibit this process, have not been investigated. In this study, we examined the ability of the green tea flavonoid epigallocatechin gallate (EGCG) to interfere with MccE492 amyloid formation. Aggregation kinetics followed by thioflavin T binding were used to monitor amyloid formation in the presence or absence of EGCG. Additionally, synchrotron radiation circular dichroism (SRCD) and transmission electron microscopy (TEM) were used to study the secondary structure, thermal stability, and morphology of microcin E492 fibers. Our results showed that EGCG significantly inhibited the formation of the MccE492 amyloid, resulting in mainly amorphous aggregates and small oligomers. However, these aggregates retained part of the ß-sheet SRCD signal and a high resistance to heat denaturation, suggesting that the aggregation process is sequestered or deviated at some stage but not completely prevented. Thus, EGCG is an interesting inhibitor of the amyloid formation of MccE492 and other bacterial amyloids.


Subject(s)
Catechin , Polyphenols , Polyphenols/pharmacology , Tea , Amyloid/chemistry , Amyloidogenic Proteins , Catechin/pharmacology , Catechin/chemistry
18.
Biochem Biophys Res Commun ; 687: 149196, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37939504

ABSTRACT

Brain gliomas are difficult in the field of tumor therapy because of their high recurrence rate, high mortality rate, and low selectivity of therapeutic agents. The efficacy of Traditional Chinese Medicine (TCM) in the treatment for tumours has been widely recognized. Here, three Chinese herb related molecules, namely Catechins, Caudatin and Cucurbitacin-I, were screened by bioinformatic means, and were found to inhibit the proliferation of glioblastoma T98G cells using Colony-forming and CCK-8 assays. Notably, the simultaneous use of all three molecules could more significantly inhibit the proliferation of glioma cells. Consistent with this, temozolomide, each in the combination with three molecules, could synergistically inhibit the proliferation of T98G cells. Results of qPCR assay was also showed that this inhibition was through the activation of the KDELR2-mediated endoplasmic reticulum stress (ER) pathway. Molecular docking experiments further revealed that Catechins, Caudatin and Cucurbitacin-I could activate ER stress might by targeting KDELR2. Taken together, these results suggest that these herbal molecules have the potential to inhibit the growth of glioma cells and could provide a reference for clinical therapeutic drug selection.


Subject(s)
Antineoplastic Agents , Catechin , Glioblastoma , Glioma , Humans , Glioblastoma/pathology , Catechin/pharmacology , Cucurbitacins/pharmacology , Cucurbitacins/therapeutic use , Molecular Docking Simulation , Glioma/pathology , Antineoplastic Agents/pharmacology , Cell Proliferation , Endoplasmic Reticulum Stress , Cell Line, Tumor , Apoptosis , Vesicular Transport Proteins/metabolism
19.
Eur J Pharmacol ; 961: 176204, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37979829

ABSTRACT

Age-related cataract (ARC) is a common eye disease, the main cause of which is oxidative stress-mediated apoptosis of lens epithelial cells (LECs). Epigallocatechin gallate (EGCG) is the most potent antioxidant in green tea. Our results demonstrated that EGCG could effectively reduce apoptosis of LECs and retard lens clouding in aged mice. By comparing transcriptome sequencing results of three groups of mice (young control, untreated aged, and EGCG-treated) and screening using GO and KEGG analyses, we selected RASSF2 as the effector gene of EGCG for mechanistic exploration. We verified that the differential expression of RASSF2 was associated with the occurrence of ARC in clinical samples and mouse tissues by immunohistochemistry and western blotting, respectively. We showed that high RASSF2 expression plays a crucial role in the oxidative induction of apoptosis in LECs, as revealed by overexpression and interference experiments. Further studies showed that RASSF2 mediates the inhibitory effect of EGCG on apoptosis and ARCogenesis in LECs by regulating AKT (Ser473) phosphorylation. In this study, we found for the first time the retarding effect of EGCG on lens clouding in mice and revealed the mechanism of action of RASSF2/AKT in it, which provides a theoretical basis for the targeted treatment of EGCG.


Subject(s)
Cataract , Catechin , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Catechin/pharmacology , Catechin/therapeutic use , Apoptosis , Cataract/drug therapy , Cataract/prevention & control , Tea
20.
Chem Biodivers ; 20(12): e202301234, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37867394

ABSTRACT

The genus of Salix is used in food, medicine and nutraceuticals, and standardized by using the single marker compound Salicin only. Stem bark is the official part used for the preparation of various drugs, nutraceuticals and food products, which may lead to overexploitation and damage of tree. There is need to search substitution of the stem bark with leaf of Salix alba L. (SA), which is yet not reported. Comparative phytochemicals viz. Salicin, Procyanidin B1 and Catechin were quantified in the various parts of SA viz. heart wood (SA-HW), stem bark (SA-SB) and leaves (SA-L) of Salix alba L.by using newly developed HPLC method. It was observed that SA-HW and SA-L contained far better amount of Salicin, Procyanidin B and Catechin as compared to SA-SB (SA-HW~SA-L≫SA-SB). Essential and toxic metal ions of all three parts were analysed using newly developed ICP-OES method, where SA-L were founded as a rich source of micronutrients and essential metal ions as compared to SA-SB and SA-HW. GC-MS analysis has shown the presence of fatty acids and volatile compounds. The observed TPC and TFC values for all three parts were ranged from 2.69 to 32.30 mg GAE/g of wt. and 37.57 to 220.76 mg QCE/g of wt. respectively. In DPPH assay the IC50 values of SA-SB, SA-HW, and SA-L were 1.09 (±0.02), 5.42 (±0.08), and 8.82 (±0.10) mg/mL, respectively. The order of antibacterial activities against E. coli, S. aureus, P. aeruginosa, and B. subtilis strains was SA-L>SA-HW>SA-SB with strong antibacterial activities against S. aureus, and B. subtilis strains. The antacid activities order was SA-L>SA-SB>SA-HW. The leaves of SA have shown significant source of nutrients, phytochemicals and medicinal properties than SA-HW and SA-SB. The leaves of SA may be considered as substitute of stem bark to save the environment or to avoid over exploitation, but after the complete pharmacological and toxicological studies.


Subject(s)
Anti-Infective Agents , Anti-Ulcer Agents , Catechin , Salix , Catechin/pharmacology , Antioxidants/analysis , Antacids/analysis , Antacids/metabolism , Salix/chemistry , Salix/metabolism , Wood , Plant Bark/chemistry , Escherichia coli , Staphylococcus aureus , Plant Extracts/chemistry , Phytochemicals/chemistry , Anti-Bacterial Agents/metabolism , Plant Leaves , Anti-Infective Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL